Transport modelling
BMEKOKUM209

VISSIM introduction

ABA, Attila, research fellow
Dr. JUHÁSZ, János, associate professor
Danish Farooq, PhD student
Overview of the second part - VISSIM

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture/practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.09</td>
<td>Introduction and practice</td>
</tr>
<tr>
<td>11.16</td>
<td>Students’ Conference – on-field measurements</td>
</tr>
<tr>
<td>11.23</td>
<td>Group-work and consultation</td>
</tr>
<tr>
<td>11.30</td>
<td>Mid-term and group work consultation</td>
</tr>
<tr>
<td>12.07</td>
<td>Group work presentation (extra mid-term, if needed)</td>
</tr>
</tbody>
</table>
PTV models

Macroscopic:
Transport needs modelling – VISUM
Choices on flow level

Microscopic:
Traffic flow modelling – VISSIM
Choices on driver level

Source: PTV Vision® - Analyzing the Transportation System
Simulation

• Simulation is the imitation of the operation of a real-world process or system over time.
• The act of simulating something first requires that a model be developed; this model represents the key characteristics or behaviors/function of the selected physical or abstract system or process.
• The model represents the system itself, whereas the simulation represents the operation of the system over time.
Why Use Traffic Simulation?

• Better Representation of Real Life Traffic
• Flexible Geometry
• System Wide Analysis
• Upstream/Downstream Queuing
• Multi-Modal (Transit, Bicycle, Peds, etc.)
External Factors
Keywords

- System: the real-world process to imitate;
- Model: the set of assumptions, in the form of mathematical or logical relationships, put forward to help understand how the corresponding system behaves;
- Entities: people or vehicles that act in the system;
- Time: an explicit element of the system.
Micro-simulation

- Microsimulation is a category of computerized analytical tools that perform highly detailed analysis of activities such as highway traffic flowing through an intersection.

- A numerical technique for conducting experiments on a digital computer, which may... involve mathematical models that describe the behaviour of a transportation system over extended periods of time.” (May 1990)
What Microscopic Traffic Simulation is

- Models Individual Vehicles
- Based on probability and stochastic processes
- System Wide Multi-Hour Analysis
- Impacts to System over Time and Space
- A model that includes Driver Behavior Characteristics
- Multi-Modal (Transit, Peds, Bikes, Autos, Trucks)
- A tool that can have visual Representation with 2D and 3D
- Requires more data and effort
- PARAMICS, VISSIM, AIMSUN, SIMPAS
Traffic micro-simulation entities

- Driver and vehicle characteristics.
 - Physical size: length and width
 - Mechanical capacity: maximum acceleration or deceleration
 - Driving behaviour: desired speed, reaction time, gap acceptance, aggressiveness, etc.
Driver Behaviors in Mixed Traffic
When To Use Micro simulation

- System analysis (coordination)
- Congestion / spillback / bottleneck
- Queuing / storage
- Closely spaced ramps
- Bus / multimodal / its / ramp metering
- Signal pre-emption
- Complex or unique geometry
Traffic micro-simulation models

- Car-following model
- Lane-changing model
- Gap-acceptance model
- Lane-choice model
- Models of intersection controls
• Link-connector
• Developed by PTV in Germany
• Advantages:
 • Extensive transit modeling capability
 • Light rail
 • Bus transit with bus stations
 • Route assignment based on schedule
 • Explicit pedestrian & cyclist modeling
 • 3d graphic output / impact of grades
 • Advanced signal control logic
 • Important for demand responsive operation
 • Important for signal preemption
DATA COLLECTION

- Geometry & layout
- Traffic control: signal & sign
- Volumes (reconcile counts)
- Data for calibration
 - Travel time
 - Avg & freeflow speed
 - Queue length
 - Observations / warning signs
CALIBRATION/VALIDATION

- Driver behavior
- Startup delay & reaction time
- Minimum headway/gap acceptance
- Lane change parameters
- Car following sensitivity

- Vehicle characteristic
- Traffic composition
- Maximum acceleration / deceleration

- Roadway characteristics
- Free flow speed
- Channelization
- Parking activity
Appropriate Use of VISSIM

- Where over-saturated conditions exist, and particularly where exit-blocking occurs, or where queues interact with other facilities;
- Where network infrastructure changes dynamically throughout the modelled period (e.g. VA or SCOOT signal control, demand-dependency, bus priority at signals);
- Where accurate journey time prediction is important as an improvement measure (e.g. bus priority scheme);
- Where it is necessary to visually demonstrate the operation of a scheme, traffic management technique or control strategy for use in a stakeholder consultation or Public Inquiry.
Network - behavior in lane

• Strict

• Free
Base data – vehicles, pedestrians

- Class: Composition of types
- Type: Vehicles with similar driving behavior
- Vehicle category: Essential behavior
Route-choice models

- Static origin/destination routes
- For intersection, combined or through network
Route-choice models (2)

- Traffic - Route-choice models
 - Dynamic routes – based on simulated data
Route-choice models (3)

Dynamic Traffic Assignment – close to VISUM
Behaviours in traffic

Car following

Lane change
Car following model – Wiedemann Model

- Psychological factors
 - Desired speed
 - Desired safety distance

- Physical factors:
 - Limits of detection
 - Driving errors
Traffic control – priority rules

Min. Gap Time: 3 sec
Min. Headway: 25 ft
Traffic control – traffic signals

<table>
<thead>
<tr>
<th>No</th>
<th>Signal group</th>
<th>Signal sequence</th>
<th>Cycle time: 80</th>
<th>Offset: 0</th>
<th>Switch point: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>jcs11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>jcs12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>jcs21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>jcs22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>jcs31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>jcs32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>jcs33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>jcs41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>jcs42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>jcs43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>gycs1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>gycs2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>gycs3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>gycs4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>sv1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sv2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluations

- System level
 - General time loss
 - Average travel times
 - Running distances
- Intersections
 - Time loss in intersection
 - Queue length
 - Number of stops
- Road sections
 - Traffic density
 - Traffic volumes
 - Speeds
- Public Transport
 - Travel times
 - Deviations in travel times
 - Passengers waiting times
- Emissions
- Traffic control
 - Average cycle time (if not fix)
 - Average green time (if not fix)
- Also available for selected routes
Applications

Motorway
• Testing type of junctions
• Merging sections
• Bottlenecks (discontinued lanes)
• Ramp, ramp metering
• HOV, HOT lanes
 • High Occupancy Vehicles
 • High Occupancy or Tax
• Road toll gates
Applications (2)

Urban road network

- Testing type of junctions
 - Uncontrolled
 - Roundabout
 - Traffic lights

- Different control types
 - Fix
 - Adaptive
 - Central control

- Greenwave
Applications (3)

Public transport

• Public transport performances
 • Queue length
 • Bus stop types
 • Bus lay-bay
 • On lane

• Public transport priorization
 • Bus lanes
 • Bus green gates

• Rails, trams, buses, etc.
Applications (4)

Intelligent Transport Systems
• Dynamic speed control
• Dynamic route suggestions
• Variable-message sign
• Ramp metering