MOBILITY BASED ON AUTONOMOUS VEHICLES
OPERATION, INFORMATION MANAGEMENT

CSISZÁR, Csaba PhD
associate professor

FÖLDES, Dávid
PhD student
1. Vehicle characteristics

What is the difference between automated system and autonomous system?
1. Vehicle characteristics

Automated functions
- programmed rules
- clearly described, step by step

Autonomous functions
- data collection: perception/from other sources
- cognitive capabilities, individual decision making

autonomy is a relative concept

cognitive capability:
- recognition and persistent learning capability
- create new, reliable, value-added information
- use experience, knowledge, secondary information sources
1. Vehicle characteristics

developments:
• vehicle technology
• infocommunication
• energetics

smart and connected vehicle (V2X)

V2I: traffic sign, emergency situation, etc.
V2V: location sharing, emergency situation, etc.
1. Vehicle characteristics

driver assistance functions:
- ABS, ESP
- distance warning system
- adaptive brake assistance
- blind spot detection
- lane keeping assistance
- parking assistance – automated parking
- crosswind stabilization
- traffic light assistance
- etc.

collision prevention
1. Vehicle characteristics

Devices for self-driving

Hardware devices:
- GPS – localization (+network map!)
- LIDAR – distance measure -> point cloud (3D)
- camera – traffic sign, traffic light, lane recognition
- radar – distance keeping
- sensor – environment detection – e.g. LGPR

Software devices – decision making:
automated image recognition, artificial intelligence - persistent learning

LIDAR can be replaced: cameras (360° angel of view, monocamera + AI)

AV is a rolling IT device
1. Vehicle characteristics

Automated vehicles
separated track, closed from the traffic

Autonomous vehicles
unseparated track in the traffic

alternative fuels - electromobility
1. Vehicle characteristics

<table>
<thead>
<tr>
<th>SAE levels</th>
<th>BAS levels</th>
<th>NHTSA levels</th>
<th>execution of steering and acceleration/deceleration</th>
<th>monitoring of driving environment</th>
<th>fallback performance of dynamic driving task</th>
<th>system capability (driving modes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no automation</td>
<td>driver only</td>
<td>0</td>
<td>human driver</td>
<td>human driver</td>
<td>human driver</td>
</tr>
<tr>
<td>1</td>
<td>driver assistance</td>
<td>assisted</td>
<td>1</td>
<td>human driver and system</td>
<td>human driver</td>
<td>human driver</td>
</tr>
<tr>
<td>2</td>
<td>partial automation</td>
<td>partially automated</td>
<td>2</td>
<td>system</td>
<td>human driver</td>
<td>human driver</td>
</tr>
<tr>
<td>3</td>
<td>conditional automation</td>
<td>highly automated</td>
<td>3</td>
<td>system</td>
<td>system</td>
<td>human driver</td>
</tr>
<tr>
<td>4</td>
<td>high automation</td>
<td>fully automated</td>
<td>3/4</td>
<td>system</td>
<td>system</td>
<td>system</td>
</tr>
<tr>
<td>5</td>
<td>full automation</td>
<td>-</td>
<td>3</td>
<td>system</td>
<td>system</td>
<td>system</td>
</tr>
</tbody>
</table>

available new vehicles today: SAE2
developments in test phases:

• Tesla autopilot system (SAE3)
• driverless pods (SAE4)
2. International practice

sub-system development vs. entirely vehicle development
vehicle conversion vs. new vehicle
test environment: closed test track vs. existing urban/motorway area

developers: conventional vehicle manufacture/IT company

Who do you trust better?

development goal: service oriented (UBER)/
product oriented (Tesla)

What will be the transportation in the future?

TEST PHASE – accompanying staff
(wheels/pedals and emergency stop button)

goal: experience collection – machine learning
passenger reaction analyzing
2. International practice

types of development:

• car: Tesla, BMW, Audi, UBER, Google (Waymo)
• small bus – pod: EasyMile, Navya Arma, Local Motors
• bus: Mercedes
• truck: Volvo (Otto)

pod-like services in test:

• Berlin: university campus (DB)
• Berlin: hospital buildings (BVG)
• Vienna: smart city quarter (WienerLinien)
• Wageningen–Ede, Netherland: between cities in public roads
• Civaux, France: nuclear power station
• Citymobile2 EU project (Trikala, Vantaa, La Rochelle)
pod – OLLI (1:25)
Bus – Mercedes-Benz (1:25)
2. International practice

Hungary:

- university researches
- RECAR – research center
- education - Autonomous Vehicle Control Engineer - MSc (BME-ELTE) – expected launch: 2018. autumn
- Zalaegerszeg - Autóipari Próbapálya Zala Kft. – closed test track
- Budapest, Szépvölgyi street - test environment in public roads - Almotive Kft.
3. Service types

Alteration in transportation modes

<table>
<thead>
<tr>
<th>Service types</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-DRT (Telematic-based Shared Demand Responsive Transportation)</td>
<td>merging existing ‘transitional’ modes</td>
</tr>
<tr>
<td>Public transportation</td>
<td>arterial network, high volume of passenger</td>
</tr>
<tr>
<td>Individual AV</td>
<td>only for the most flexible travel purposes</td>
</tr>
<tr>
<td>Bicycle, bike-sharing</td>
<td>unaltered volume</td>
</tr>
<tr>
<td>Pedelec</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- no altering
- altering
- merging
- TS-DRT

Service-oriented approach instead of vehicle-oriented approach
3. Service types

„Transitional modes” – shared, mobile application based, dynamic tariff system

ride-sharing (carpooling):
BlaBlaCar, Oszkár (inter-city traveling) / WAZEcarpool, BlaBlaLines (daily commuting)

car-sharing
Greengo

ride-sourcing (ride-hailing):
UBER, Lyft, Grab
• shared ride-sourcing (pl.: UBERpool)
• delivery-sourcing (UBEReat, Pickitapp)
• automatization willingness is relevant
 UBER, Grab (NuTonomy)
3. Service types

Automated public transportation:

- **Automated**
 - Elevator, escalator, travelator
 - People mover
 - Underground
 - Tram
 - Bus

- **Autonomous**
 - GRT (Group Rapid Transit)
 - PRT (Personal Rapid Transit)

Legend:
- Typical classification
- In case of specific situation
3. Service types

TS-DRT characteristics:

- small capacity (max 15 passengers) pod
- service types:
 - feeder service
 - door-to-door – more expensive
- reservation in advance
- flexible route, without timetable
- dynamic tariff system
- mobile application based
- high comfort – infotainment
- platooning

Transportation is more personalized but planned in advance

<table>
<thead>
<tr>
<th>Size of Vehicle</th>
<th>Sharing</th>
<th>Reservation Obligatory</th>
<th>Origin and Destination</th>
<th>Route</th>
<th>Timetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>small sized (PRT)</td>
<td>no</td>
<td>yes</td>
<td>optional location</td>
<td>flexible</td>
<td>no</td>
</tr>
<tr>
<td>medium sized (GRT)</td>
<td>yes</td>
<td>no</td>
<td>fix (smart) stop</td>
<td>fix</td>
<td>fix</td>
</tr>
</tbody>
</table>

Legend: typical feature of PRT

Non-typical feature of PRT

Features of the modelled TS-DRT
3. Service types

Delivery

last mile collection/distribution (and long distance delivery)

- safety/security?
- parcel handling? – (un)loading, receipt (identification, payment)

delivery-sourcing: e.g. UBEReats, Pickitapp

Combined ride-sourcing

order vehicle for traveling or sending package/purchase a product and home delivery
4. Operation management

integrated mobility management centre

Integrated smart mobility management centre - Functions

Traveller information services

- F1 Personalized activity chain (route) planning
- F3 Road/parking reservation
- F5 Payment
- F7 Information about supplementary services

Operational functions

- F2 Seat reservation
- F4 Charging point reservation
- F6 Navigation/guiding/location based information
- F8 Safety/security functions
- F9 Route and schedule planning (PT, TS-DRT)
- F10 Operative control (PT, TS-DRT, bike-sharing)
- F11 Control of road traffic (signals, AVs)
- F12 Evaluation of services (feedback)

Legend:

- Basic processes
- Information flow
- Cooperation between functions
4. Operation management

Structural model of TS-DRT
4. Operation management

the (passenger) transportation transfer into a special information system
4. Operation management

Smart stop

- equipped with devices → improve physical and mental comfort
- automated/autonomous functions
- mobility related and not-mobility related services
- renewable energy sources
- high comfort level
- intermodal facilities

<table>
<thead>
<tr>
<th>Services</th>
<th>Mobility Related Services</th>
<th>Not-Mobility Related Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Services</td>
<td>Information provision (e.g. real-time, warning)</td>
<td>Ticketing (e.g. purchase)</td>
</tr>
<tr>
<td>Physical Services</td>
<td>Intermodal services (e.g. bike-sharing)</td>
<td>Entertainment (e.g. phone charging, information about weather, POI, news)</td>
</tr>
<tr>
<td></td>
<td>Comfort (e.g. air-conditioning)</td>
<td>Supplementary services (e.g. recycle waste)</td>
</tr>
</tbody>
</table>
4. Operation management

environmental friendly, green energy

charging

• conventional: charging point (wired) – in the depo, in the street

 who charges the vehicle?

• automated charging
 – instant charging (pantograph)
 – inductive, wireless charging

smart technology (reservation, identification, payment)
personalized (mobile application based)

parking (in the depo) + charging
4. Operation management

Intelligent road infrastructure

where is the intelligence? – vehicle vs. infrastructure

- sensors (e.g. weather, road condition, traffic situation)
- V2I: messages between vehicle and infrastructure
- V2V: messages between vehicles – without road signs/markers

BUT! road signs/markers are necessary for soft mobility modes
4. Operation management

Operational and planning functions of TS-DRT

Planning functions

Operational functions

Basic processes

planning, organizational, operational and economic methods are altering
4. Operation management

Data structure of TS-DRT

Legend: → 1:N connection

- Infrastructure related tables (A-D)
- Vehicle related tables (E-F)
- Passenger related tables (G-H)
- Service related tables (I-O)

POINT (B) - smart stops, other boarding/ alighting points
ROUTE SECTION – DYNAMIC (D)
CLIENT (G)
RUN (I) and TRAVEL (K) – disaggregated into sections
OD (O) and FREQUENT DESTINATIONS (H) – planning purposes
5. Passenger handling

identified functions (1):

<table>
<thead>
<tr>
<th>function groups</th>
<th>functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>nr. name</td>
<td></td>
</tr>
<tr>
<td>1 infotainment</td>
<td>F₁₁ information provision about general conditions and supplementary services</td>
</tr>
<tr>
<td></td>
<td>F₁₂ information provision about current situation</td>
</tr>
<tr>
<td></td>
<td>F₁₃ personalized journey planning and guiding/navigation</td>
</tr>
<tr>
<td></td>
<td>F₁₄ activity chain planning</td>
</tr>
<tr>
<td></td>
<td>F₁₅ information provision by installed devices (in the stop/station)</td>
</tr>
<tr>
<td></td>
<td>F₁₆ on board information provision by on board devices</td>
</tr>
<tr>
<td></td>
<td>F₁₇ on board complaining/information request</td>
</tr>
<tr>
<td></td>
<td>F₁₈ communication between vehicle-passenger</td>
</tr>
<tr>
<td></td>
<td>F₁₉ entertainment</td>
</tr>
<tr>
<td>2 management of entitlement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F₂₁ seat reservation</td>
</tr>
<tr>
<td></td>
<td>F₂₂ payment</td>
</tr>
<tr>
<td></td>
<td>F₂₃ ticketing</td>
</tr>
<tr>
<td></td>
<td>F₂₄ check-in (ticket validation)</td>
</tr>
<tr>
<td></td>
<td>F₂₅ control of entitlement (ticket inspection)</td>
</tr>
</tbody>
</table>
5. Passenger handling

identified functions (2):

<table>
<thead>
<tr>
<th>function groups</th>
<th>functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>nr.</td>
<td>name</td>
</tr>
<tr>
<td>3</td>
<td>safety</td>
</tr>
<tr>
<td>4</td>
<td>security</td>
</tr>
<tr>
<td>5</td>
<td>management of passenger room/cabin conditions</td>
</tr>
<tr>
<td>6</td>
<td>management of feedbacks</td>
</tr>
<tr>
<td></td>
<td>functions</td>
</tr>
<tr>
<td></td>
<td>name</td>
</tr>
<tr>
<td>3</td>
<td>F₃₁ avoiding accidents between vehicle and passengers</td>
</tr>
<tr>
<td></td>
<td>F₃₂ handling boarding process (warning, open/close door)</td>
</tr>
<tr>
<td></td>
<td>F₃₃ handling passengers in diseased conditions</td>
</tr>
<tr>
<td></td>
<td>F₃₄ handling fire cases</td>
</tr>
<tr>
<td></td>
<td>F₃₅ handling traffic collisions - evacuation</td>
</tr>
<tr>
<td></td>
<td>F₃₆ handling vehicle technical failures (broke down)</td>
</tr>
<tr>
<td></td>
<td>F₃₇ handling equipment technical failures</td>
</tr>
<tr>
<td>4</td>
<td>F₄₁ property protection (individual/common)</td>
</tr>
<tr>
<td></td>
<td>F₄₂ life protection</td>
</tr>
<tr>
<td></td>
<td>F₄₃ emergency call</td>
</tr>
<tr>
<td></td>
<td>F₄₄ safeguard against terrorism</td>
</tr>
<tr>
<td>5</td>
<td>F₅₁ management of comfort (e.g. heating, lighting, cleaning)</td>
</tr>
<tr>
<td>6</td>
<td>F₆₁ complaining</td>
</tr>
<tr>
<td></td>
<td>F₆₂ crowd sourcing</td>
</tr>
<tr>
<td></td>
<td>F₆₃ lost and found</td>
</tr>
<tr>
<td></td>
<td>F₆₄ data collection from/about passenger</td>
</tr>
<tr>
<td></td>
<td>F₆₅ data collection from/about vehicle/infrastructure</td>
</tr>
</tbody>
</table>

automatization of safety critical functions is more relevant
5. Passenger handling

more automatized passenger handling functions

• vehicle – passenger communication
 via (individual) electronic device, automated perception

• reservation – travel planning
 connected functions: automated reservation after travel planning

• check-in (ticket validation)
 simple: via touchless mobile device
 automated: based on location and personal data

• payment
 automated: based on length and attributes of the travel

• handling emergency situations (fire, evacuation)
 automated machine recognition, action plans, rapid human teams
Automatization levels in public transportation

Planning + passenger handling + controlling functions

<table>
<thead>
<tr>
<th>no.</th>
<th>name</th>
<th>description</th>
<th>location of decision and execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no automation</td>
<td>The human role (passenger, driver, other personnel) is unavoidable, they execute all processes; there is no direct machine support.</td>
<td>human</td>
</tr>
<tr>
<td>1</td>
<td>machine assistance</td>
<td>The human is supported by machine. However, the role of human is rather significant.</td>
<td>human aided by machine</td>
</tr>
<tr>
<td>2</td>
<td>partial automation</td>
<td>A significant part of the processes is executed by machine. The human indicates and monitors the processes.</td>
<td>rather machine with human confirmation</td>
</tr>
<tr>
<td>3</td>
<td>full automation</td>
<td>Processes are completely operated by machine in an automatic way, the personnel attends as supervisor.</td>
<td>machine</td>
</tr>
</tbody>
</table>
6. Human behaviour

- new user groups
- share of traveller types is altering

total individual utility of travelling is increasing

- useful activities during travel
- infotainment
6. Human behaviour

required human abilities are altering, cognitive capability reduce
6. Human behaviour

Information management of travellers - properties

<table>
<thead>
<tr>
<th>Traveller</th>
<th>Walking</th>
<th>Bikeway</th>
<th>Bike-sharing</th>
<th>Public Transportation (PT)</th>
<th>DRT PT</th>
<th>Car-sharing</th>
<th>Taxi</th>
<th>Ride-sourcing</th>
<th>Car-pooling</th>
<th>Chauffeur service</th>
<th>Individual calculating</th>
<th>TS-DRT</th>
<th>Individual AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Volume of machine-based information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Volume of information content of other traveller’s behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Required cognitive capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: the traveller is driver

Information management is different according to modes
7. Impacts

- increasing demands (new user groups, number of passengers, number of travels)
- new mobility forms:
 - number of vehicles and size of vehicles decrease
 - empty vehicle runs increase
 - daily performance increase
 - capacity utilization of seats increase
- headway decreases (platooning), speed increases
- capacity utilization increases, existing road infrastructure is appropriate
- needed parking capacity decreases (combined loading, parking, charging lots)
- less accident → less injury

Legend:
- reduce;
- highly reduce;
- increase;
- highly increase;

favourable alteration ;
unfavourable alteration.
Traffic flows get better (4:30)
7. Impacts

SAFETY
- improving traffic safety, less accident
- several development areas remain

drivers, as labor, are replaced
→ social tension
 altering personnel groups

law should be altering

ETHICAL DILEMMAS
 who is responsible? who makes decisions?
7. Impacts

street/urban landscape, life quality:
strict boundaries between infrastructure elements diminish
• less space is necessary for road traffic
• charging points?
• road signs/markers disappear/alter
emissions decrease (alternative fuel, better capacity utilization)

transitional periods (mix traffic)
• in automatization levels
• in traffic flows – proportion of AVs, proportion of different type of AVs - scenarios

altering urban environment, livable cities
THE FUTURE IS COMING IN A GREEN WAY
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
Faculty of Transportation Engineering and Vehicle Engineering
Department of Transport Technology and Economics

THANK YOU FOR YOUR KIND ATTENTION!